

Cost-efficiency in software (re-)architecting

Vasilios Andrikopoulos

Software Engineering and Architecture (SEARCH) Group Bernoulli Institute for Mathematics, Computer Science & Artificial Intelligence

> SEN Symposium 2020 Amsterdam, January 31 2020

Bio/Research interests

Take-away messages (preview)

- 1. There is a relation between software cost and architecture
- 2. Architecting for cost efficiency is not only nontrivial...
- 3. ...but requires both design- and run-time aspects

Cost?

Software development takes time and money. When commissioning a building project, you expect a reliable estimate of the cost and development time up front. Getting reliable cost and schedule estimates for software development projects is still largely a dream. Software development cost is notoriously difficult to estimate reliably at an early stage.

Software Engineering: Principles and Practice. Hans van Vliet, Wiley, 2007.

The Cloud

Cost savings as motivation for cloud adoption

- > Converting CAPEX to OPEX
 - No upfront hardware procurement costs
- Race to Zero in some types of offerings e.g. storage
 - Vendor lock-in as a side-effect

Public cloud provider cost models

Cost as tiered linear functions of time/volume
[Andrikopoulos et al. 2013]

$$f(x,y) = \begin{cases} (0.095 \times \frac{x}{1000}) + \frac{(0.01 \times y)}{100000} & x \in [0,1] \\ (95 + (0.8 \times \frac{x-1}{1000}) + \frac{(0.01 \times y)}{100000} & x \in (1,50] \\ (4015 + (0.7 \times \frac{x-50}{1000}) + \frac{(0.01 \times y)}{100000} & x \in (50,500] \\ \dots \end{cases}$$

- Billable Time Units (BTUs) have gone down from hour(s) to seconds in the last years
- > Prices per hour/GB are continuing to fall rapidly

Cloud service selection decision support

Services ranking

Application performance x deployment

Load characterization

	Query	Accessed Tables	Subqueries	Total Logical Evaluations		Throughput (Req./s)			Retrieved Data (B)	Category ID
					On-Premise	Ia Flexiscale	aS AWS EC2	DBaaS		
-	$O^{(1)}$	1	0	1	0.03425	0.03396	0.04115	0.03817	538	CH
$Q^{(2)}_{(2)}$	5		1	13	0.07927	0.14884	0.07413	3.03260	15857	CH
	$Q^{(4)}$	2	1	5	0.53950	0.73922	0.54244	0.94903	105	CL
	$Q^{(5)}$	6	0	9	0.01148	0.02014	0.01377	0.33484	130	CH
	$Q^{(6)}$	1	0	4	0.20583	0.21355	0.22450	0.28261	23	CL
	$Q^{(7)}$	5	1	11	0.03123	0.04782	0.03477	0.20792	163	CH
	$Q^{(8)}$	7	1	11	0.97156	1.45380	0.74072	0.18196	49	$\mathbf{C}\mathbf{M}$
	$Q^{(9)}$	6	1	8	0.05947	0.09123	0.05470	0.05548	4764	CH
	$O^{(10)}$	4	0	6	0.09168	0 11970	0.09584	0.49834	3454	CH
$Q^{(11)}$	3		1	6	2.59998	4.07134	1.85092	0.26802	16069	CL
	Q	2	U	7	0.21147	0.22465	0.23487	0.13981	71	CL
	$Q^{(13)}$	2	1	2	0.12771	5.32350	-	-	16	CL
	$Q^{(14)}$	2	0	3	0.03373	0.06017	0.03444	0.29052	28	CH
	$Q^{(15)}$	1	0	2	201.53365	22.25911	12.0840	23.11528	9	CL
	$Q^{(16)}$	2	1	2	0.11346	0.11219	0.12755	0.13471	120	$\mathbf{C}\mathbf{M}$
	$Q^{(17)}$	3	1	6	0.10931	0.19021	0.11319	0.97148	648259	CL
	$Q^{(18)}$	2	1	5	0.98213	1.81212	-	-	25	CL
•	$\alpha^{(19)}$	0	- 4	- 0						
$Q^{(20)}$	2	2	0	25	4.05648	4.90228	3.29667	0.17083	21	CM
	Ψ.	Ð	4	0	3.02100	0.02041	2.30104	-	0909	UIVI
	$Q^{(22)}$	4	2	13	0.01070	0.01734	0.01610	0.06065	8944	CH
	$Q^{(23)}$	2	2	6	2.72083	3.30785	2.35940	-	137	$_{\rm CL}$

Table I: TPC-H Workload Analysis.

1K queries with synthetic load

	Scenario	Category	% Queries same Category	Distribution Parameters	$\begin{array}{c} {\rm Throughput} \\ {\rm (Req./s)} \end{array}$
	On- Premise	$_{\rm CL}$	79.4%	k = 0.35666 $\lambda = 3.28983$	0.27749
	On- Premise	CM	18.9%	k = 0.36037 $\lambda = 0.80655$	0.05888
	On- Premise	CH	95.0%	k = 0.53023 $\lambda = 0.08990$	0.02696
	DBaaS	\mathbf{CL}	66%	k = 0.54324 $\lambda = 0.59264$	0.45238
	DBaaS	CM	21.6%	k = 0.57200 $\lambda = 0.88472$	0.19972
	DBaaS	CH	88.3%	k = 0.74471 $\lambda = 0.23991$	0.10273
	IaaS	\mathbf{CL}	78.2%	k = 0.63816 $\lambda = 1.64010$	0.34477
	IaaS	$\mathbf{C}\mathbf{M}$	20.0%	k = 0.52690 $\lambda = 0.53472$	0.06046
	IaaS	CH	90.8%	k = 0.60906 $\lambda = 0.11362$	0.03378

Application Topology

An **application topology** is a labeled graph $G = (N^L, E^L, s, t)$

where $N: nodes, E: edges, L: labels \& s, t: E^L \to N^L$

[Andrikopoulos et al 2014]

The topology graph *T* is called **typed** if the label set contains **only** typed elements.

A (typed) topology *T* is **viable** w.r.t. a type graph with inheritance TG_I iff **all** elements of *T* are *labeled* over the elements of TG_I . TG_I is then called the **µ-topology** of the application.

Example of a μ -topology

Utility Function

> Set of functions F on real numbers \mathbb{R} such as:

 $\boldsymbol{F} = \{f(a_1, \dots, a_n) | n \ge 1, f \colon \mathbb{R}^* \to \mathbb{R}\}$

- > Mapping function $f_{map}: V \to F$ from F to set of all viable topologies V
- > Utility function: $u^{(i)}(a_1, ..., a_n) = f_{map}(T^{(i)}) = u^{(i)}(T^{(i)})$
- → Given a set of values $(p_1, ..., p_n)$ then the function can be evaluated as $r^{(i)} = eval(u^{(i)}(T^{(i)}), (p_1, ..., p_n)) = u^{(i)}(p_1, ..., p_n), r^{(i)} \in \mathbb{R}$

Utility based on Operational Expenses (OPEX)

university of groningen

$$u(T^{(1)}) = u^{(1)}(k_{max}, h_{\tau}, z) = k_{max} - (opex_{zSeries}(h_{\tau}, z) + opex_{EC2_m1.large}(h_{\tau}))$$

OPEX-oriented optimization

 $u(T^{(2)}) = k_{max} - (opex_{zSeries}(h_{\tau}, z) + opex_{EC2_m1.medium(Win)}(h_{\tau}) + opex_{EC2_m1.medium(Lnx)}(h_{\tau}))$

$$u^{(i)}(h_{\tau},\tau,n_{I/O},d_{storage},d_{egress},loc) = opex_{max} - opex^{(i)}(h_{\tau},\tau,\ldots)$$

[Andrikopoulos et al 2014]

Cost vs Profitability

Table I: Evaluation Setup - Viable Distributions (T^{μ}) of the MediaWiki Application. Prices are calculated for the on-demand usage. Storage and data transfer costs are billed separately.

Computational waste in the cloud

% of Cloud Spend Wasted

university of groningen

MAPE-K

Phases of the CBA lifecycle

Cost efficiency in software (re)architecting

- > Multiple goals
 - Decrease cost without hurting performance (underprovisioning)
 - Minimize waste (overprovisioning)
- During design time
 - Informed decision making during design cycles
 - Cost/performance trade-offs under consideration
- > During run time
 - Active monitoring, refactoring, and redeployment of the application

Main take-aways

- Cost management as an architecting activity
 - Counter-intuitive phenomena
 - Experimentation/monitoring is required
- Design- and run-time activities are complementary, not mutually exclusive

Reach out to me at:

v.andrikopoulos@rug.nl https://vandriko.github.io @v_andrikopoulos

Further reading

- Andrikopoulos, V., Binz, T., Leymann, F., & Strauch, S. (2013). <u>How to adapt applications for the cloud</u> <u>environment</u>. *Computing*, *95*(6), 493-535.
- Andrikopoulos, V., Reuter, A., Xiu, M., & Leymann, F. (2014, June). <u>Design support for cost-efficient application</u> <u>distribution in the cloud</u>. In 2014 IEEE 7th International Conference on Cloud Computing (pp. 697-704). IEEE.
- Sáez, S. G., Andrikopoulos, V., Hahn, M., Karastoyanova, D., Leymann, F., Skouradaki, M., & Vukojevic-Haupt, K. (2015, May). <u>Performance and cost trade-off in IaaS environments: a</u> <u>scientific workflow simulation environment case study</u>. In *International Conference on Cloud Computing and Services Science* (pp. 153-170). Springer, Cham.