
Using a Microbenchmark to 
Compare Function as a Service 
(FaaS) Solutions

Timon Back & Vasilios Andrikopoulos
ESOCC, September 2018

13-Sep-18 | 1



Some terminology
› Serverless computing model

• Code executed without any control
on the resources on which the code runs

› Function as a Service (FaaS)
• Similar to PaaS but finer granularity
• Scaling on the level of functions
• Event-driven

13-Sep-18 | 2



Industry adoption

“Year over year, serverless was the top-growing 
extended cloud service with a 75 percent increase 
over 2017 (12 to 21 percent adoption)”

13-Sep-18 | 3



FaaS Pricing Model Peculiarities

13-Sep-18 | 4

BTU= 
100 ms

Factor A: 
#Invocations

Factor B: 
#GB-Seconds



Key challenges

1. How do (public cloud) FaaS perform 
with respect to each other?

2. How to estimate the elusive GB-second?

13-Sep-18 | 5



FaaS microbenchmark
› (Micro)benchmarking an acceptable practice for 

comparing public cloud providers (Li et al. 
2013)

› Existing benchmarks aimed at coarser 
granularity see for example Malawksi et al. 2018

› Publicly available 
https://github.com/timonback/
faas-mubenchmark

13-Sep-18 | 6

https://github.com/timonback/faas-mubenchmark


Design & Implementation
› Functions with parameters ranging over discrete 

domains with known memory/processing demands
• FFT 
• Matrix Multiplication (MM)
• Sleep (S), and others

› Implemented in Node.js as LCD

› Builds on the serverless framework for instrumentation 
purposes

› Measured data as reported by provider-side event logs
• Datasets available on the same Git repo as code

13-Sep-18 | 7



Service Comparison Setup
› Apache OpenWhisk (local deployment) as the 

baseline for comparisons
• Forms the basis of IBM Cloud Functions

› Compared providers:
• AWS Lambda, Google Cloud Functions (Beta), 

Microsoft Azure Functions, IBM Cloud Functions 
• Free tier services used only

› Allocated memory: 128, 256, 512, 1024, and 
2048 MB for all functions and all* services

13-Sep-18 | 8



Finding 1: Beware the sub-BTU variability

13-Sep-18 | 9

BTU line



Finding 1: Beware the sub-BTU variability

13-Sep-18 | 10

In beta (until 
July 2018)



Finding 2: Your provider mileage may vary

13-Sep-18 | 11



Finding 2: Your provider mileage may vary

13-Sep-18 | 12



Finding 3: More memory, faster execution*

13-Sep-18 | 13



Finding 4: OoM causes abrupt termination

13-Sep-18 | 14

No errors 
reported!



Finding 5: The devil is in the coefficients

13-Sep-18 | 15



Finding 5: The devil is in the coefficients

13-Sep-18 | 16

!!!



Some extra findings
› “Hockey stick” behavior for short living 

functions with CPU-biased load (π calculation)
• CPU cycles/memory mapping only kicks in after 

enough stress to the function

› Dynamic allocation suffers under memory-
biased loads (union-find algorithm)
• Favors providers like Amazon & Google’s FaaS

13-Sep-18 | 17



Conclusion
› Microbenchmarking as a 

viable & efficient 
instrument 

› Big differences between 
providers

› Function-specific 
benchmarking is required 
for “safe” results

› Future work
• Decision model for FaaS

adoption/bursting
• Middleware implementing 

this model

13-Sep-18 | 18

Reach me at:

v.andrikopoulos@rug.nl
https://vandriko.github.io

@v_andrikopoulos

mailto:v.andrikopoulos@rug.nl
https://vandriko.github.io/

	Using a Microbenchmark to Compare Function as a Service (FaaS) Solutions
	Some terminology
	Industry adoption
	FaaS Pricing Model Peculiarities
	Key challenges
	FaaS microbenchmark
	Design & Implementation
	Service Comparison Setup
	Finding 1: Beware the sub-BTU variability
	Finding 1: Beware the sub-BTU variability
	Finding 2: Your provider mileage may vary
	Finding 2: Your provider mileage may vary
	Finding 3: More memory, faster execution* 
	Finding 4: OoM causes abrupt termination
	Finding 5: The devil is in the coefficients
	Finding 5: The devil is in the coefficients
	Some extra findings
	Conclusion

