
1

Utility-based Decision Making for Migrating Cloud-based Applications

SANTIAGO GÓMEZ SÁEZ, University of Stuttgart
VASILIOS ANDRIKOPOULOS, University of Groningen
MARINA BITSAKI, University of Crete
FRANK LEYMANN, University of Stuttgart
ANDRÉ VAN HOORN, University of Stuttgart

Nowadays, cloud providers offer a broad catalog of services for migrating and distributing applications in
the cloud. However, the existence of a wide spectrum of cloud services has become a challenge for deciding
where to host applications, as these vary in performance and cost. This work addresses such a challenge,
and provides a utility-based decision support model and method that evaluates and ranks during design
time potential application distributions spanned among heterogeneous cloud services. The utility model is
evaluated using the MediaWiki (Wikipedia) application, and shows an improved efficiency for selecting cloud
services in comparison to other decision making approaches.

CCS Concepts: rComputer systems organization → Cloud computing; rSoftware and its engi-
neering → Designing software; Software design engineering;

Additional Key Words and Phrases: Cloud Application Topologies, Cloud Services Selection, Utility Theory,
Decision Making

ACM Reference Format:
Santiago Gómez Sáez, Vasilios Andrikopoulos, Marina Bitsaki, Frank Leymann, and André van Hoorn, 2016.
Utility-based Decision Making for Migrating Cloud-based Applications. ACM Trans. Internet Technol. 1, 1,
Article 1 (January 2016), 21 pages.
DOI: 0000001.0000001

1. INTRODUCTION
The rapid growth of cloud providers and solutions has opened in the last years a broad
umbrella of possibilities for partially or completely migrating applications to Everything-
as-a-Service (*aaS) offerings [Andrikopoulos et al. 2013]. Besides, the materialization and
usage of DevOps principles in both research and industry domains seem to be more and
more evident, as these allow to rapidly develop, provision, deploy, and adapt applications in
the cloud [Humble and Molesky 2011; Bass et al. 2015].

Focusing in this work on business applications and the cloud model defined in the
NIST definition of cloud computing [Mell and Grance 2011], cloud computing is basically
a key enabler of rapid business growth and transformation, as it allows to reduce costs
while ensuring rapid deployment and scalability properties [Council 2013]. However, the
heterogeneity of cloud services and providers has progressively become a challenge for
migrating applications to the cloud, as (i) the performance of cloud services typically
fluctuates and varies w.r.t. the type of cloud service and provider [Gómez Sáez et al. 2015],

This research is founded by the German DFG projects SitOPT (610872) and Declare (HO 5721/1-1).
Author’s addresses: Santiago Gómez Sáez, Vasilios Andrikopoulos, Frank Leymann, Institute of Architecture
of Application Systems (IAAS), University of Stuttgart, Germany; Marina Bitsaki, Department of Computer
Science, University of Crete, Greece; André van Hoorn, Reliable Software Systems Research Group, Institute
of Software Technology, University of Stuttgart, Germany.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
c© 2016 ACM. 1533-5399/2016/01-ART1 $15.00

DOI: 0000001.0000001

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:2 Gómez Sáez et al.

and (ii) the fluctuation of the application workload has an impact on the application’s overall
performance [Gómez Sáez et al. 2014]. In particular, applications cannot be re-engineered
for the cloud using traditional methods and techniques, due to the fundamental properties
of cloud infrastructures, such as multi-tenancy and elasticity [Harms and Yamartino 2010].
Informally defined, cloud-based applications rely on one or more cloud services in order
to be able to deliver their functionality to their users. Application engineers must therefore
rethink how to (re)design and provision their applications to be enabled for the cloud, as its
simple packaging in virtual machines does not exploit the full spectrum of cloud services.
Moreover, design tools and decision making techniques were not originally designed for the
cloud, including decision support mechanisms and tools to assist in the optimal selection
and configuration of cloud services [Jamshidi et al. 2013].

The SCAR Framework (SCARF) is the main pillar in our research agenda [Gómez Sáez
et al. 2014; Gómez Sáez et al. 2016], and is geared towards assisting application developers to
efficiently (re)distribute their application components spanned among multiple cloud offerings
to cope with business objectives and variable performance demands. This work focuses on
migrating applications that follow the layered architectural pattern [Fowler 2002], such as the
three-layered Web shop application evaluated in [Andrikopoulos et al. 2014]. In particular,
this work materializes the decision making mechanism in SCARF, by using utility theory
for the cost- and performance- efficient distribution of cloud-based applications.

Utility, defined as the perceived satisfaction when consuming a good or service, emerged
in the economics domain towards understanding decisions and assisting decision making
processes over goods and services [Marshall 2009]. More specifically, utility is a measure of
preferences over a set of good of services [Marshall 2009], which is typically used in game
theory and decision making mechanisms, e.g., in multi-attribute utility theory [Keeney and
Raiffa 1993]. Utility has also been utilized for optimizing the allocation of computational [Mi-
narolli and Freisleben 2011a] and storage resources [Strunk et al. 2008], and in this work
has one major goal: assisting business and IT experts in the decision making tasks when
spanning their applications among multiple and heterogeneous cloud services and providers.
Utility functions can assist in evaluating the trade-off between application requirements,
such as the ones related to the cost and performance. The contributions of this paper are:
(1) An extension of the SCARF life cycle introduced in our previous work [Gómez Sáez et al.

2016], which focuses on the performance- and cost-efficient distribution of applications, by
means of incorporating the decision making phases and using utility theory as the basis,

(2) a formal utility model serving as the underlying decision making mechanism to assist in
the distribution of cloud-based applications consuming different cloud services, and

(3) a first evaluation of such a model using a two-layered MediaWiki1 application, the
Wikipedia realistic workload and data, its financial reports, and under different single-
provider distribution scenarios.

Evaluation results show a better accuracy when using the proposed utility model for the
decision making tasks to distribute applications among cloud services. The remainder of this
paper is structured as follows. Sec. 2 summarizes relevant concepts this work builds upon.
The utility model for optimizing the distribution of cloud-based applications is presented in
Sec. 3.1, which are subsequently evaluated in Sec. 4. Sec. 5 presents the limitations of our
approach, Sec. 6 introduces related works, and Sec. 7 concludes with future research works.

2. (RE)DISTRIBUTION OF CLOUD-BASED APPLICATIONS
This work builds upon two pillars: (i) the design and distribution of cloud-based applications,
and the (ii) economic models used for decision making of cloud-based applications. In this
section, we tackle the former by means of introducing a (i) cloud topology model used

1MediaWiki: https://www.mediawiki.org

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Utility-based Decision Making for Migrating Cloud-based Applications 1:3

66©	Santiago	Gómez	Sáez

Re
se
ar
ch

interacts-with

WebShop:	Web_App

Webshop_Backend:
WAR

Webshop_Front-end:	
PHP_App

α-topology

Apache_HTTP_Server:
Web_Server

Ubuntu13.0:
Virt_Linux_OS

AWS_EC2_
m1.medium
:	AWS_EC2

Apache_PHP_Module:
PHP_Container

AWS_RDS_m1
.medium:	
AWS_RDS

MySQL:	
SQL_DBaaS

𝛾-topology

μ-topology

WL KPI

alt_hosted_on
hosted_on

Application	specific

WL

KPI

Workload	behavior
Key	Performance	
Indicators

Product_DB:
SQL_DB

Apache_Tomcat:	
Servlet_Container

Ubuntu14.04_LTS:
Virt_Linux_OS

AWS_EC2_m4.
xlarge:	AWS_EC2

Fig. 1: Topology Model - WebShop Example

as the underpinning support for the modeling of reusable application topologies, which is
used in (ii) SCARF, consisting of a life cycle and the Systematic Cloud-based Application
(Re)Distribution Method (SCARM) for the (re)distribution of applications in the cloud.

2.1. Cloud-based Application Topology Model
A cloud-based application topology model is a labeled acyclic graph depicting the application
stack, by means of representing application components and services as nodes, and the
relationships among them as a set of edges [Andrikopoulos et al. 2014]. Fig. 1 depicts a
three-tiered Web shop application topology, comprising a PHP-based front-end, a Java-
based back-end, and a SQL database back-end. Towards empowering the reusability of
topology models among applications, we proposed to model an application topology as a
typed topology graph model, which can be partitioned into a graph model that depicts the
application-specific (α-topology) and non-application specific γ-topology [Andrikopoulos
et al. 2014]. α-topologies represent the components that are unique and specific for each
application, e.g., the front- and back-ends of the Web shop in Fig. 1, while the γ sub-
topologies depict application non-specific components, such as middleware components like
an Apache Web server or a MySQL DBaaS offering. α-topologies are the result of alternative
architectural decisions, which result into different topology models. γ sub-topologies are
intended to be used in further application topologies, e.g., using the Apache Web server
γ-topology of Fig. 1 in another PHP-based application. The utilization of inference in the
typed topology graph model allows to discover one or multiple viable distributions of the
application, denoted as µ-topologies in Fig. 1.

So far, we introduced a topology model comprising the functional aspects of the applica-
tion. Incorporating in the topology non-functional aspects, such as performance and cost
constraints, can serve as a filtering mechanism for discovered µ-topologies, e.g., in order to

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:4 Gómez Sáez et al.

77©	Santiago	Gómez	Sáez

Re
se
ar
ch

KPI	Specification

Workload	&	Revenue	
Model	Derivation

Workload	Evolution	&	
Characterization

Top-dow
n

Bo
tt
om

-u
p µ-Topologies	Discovery

Cloud	Services
Selection	&	Configuration

µ-Topologies	Ranking
Application
Architect

Business
Architect

Cloud
Environment

Fig. 2: Optimal Distribution of Cloud-based Applications - Life-Cycle

trim down the number of viable application distributions [Andrikopoulos et al. 2014]. For
this, a cost- and performance-aware topology model incorporating the notions of cost and
performance was introduced in [Gómez Sáez et al. 2016]. The introduced topology model is
fundamental for the utility-based analysis carried on in the remainder of this paper, as it
is used as the basis for the decision making tasks related to optimally selecting a specific
distribution of an application (µ-topology) [Gómez Sáez et al. 2014; Gómez Sáez et al. 2016].

2.2. SCARF: The SCAR Framework
The distribution of applications in cloud environments is typically a non-trivial task, due
to the diversity of cloud offerings, providers, and the heterogeneous characteristics among
them. Architecting cloud-based applications in a cost- and performance-efficient manner
requires to consider (i) the difference between the required and offered performance, and (ii)
the application workload behavior evolution.

The first ingredient in SCARF consists of (i) a life-cycle (extended from [Gómez Sáez et al.
2016]) depicted in Fig. 2, and (ii) the Systematic Cloud-based Application (Re)Distribution
Method (SCARM) introduced in [Gómez Sáez et al. 2016]. Since migration of applications
to the cloud often involves the interaction of business leaders and IT professionals [Laverty
et al. 2014], we consider two main actors in the design and development of distributed
cloud-based applications: the (i) Application Architect, responsible for the architectural
design and planning of the application distribution, and the application profile, and the (ii)
Business Architect, responsible for the analysis and creation of business KPIs and plans, such
as the analysis and derivation of revenue models and objectives for the different business lines.
Focusing on the life-cycle phases, the first phase consists of the KPI Specification, by means
of defining and specifying the business and operational requirements. For the MediaWiki
application depicted in Fig. 1, a KPI business requirement can be related to increasing the
monetary incomes by 15%, while an operational requirement can be related to reducing the
maintenance costs by 40%. In the Workload & Revenue Model Derivation phase, application
and business architects define and derive the workload behavioral and revenue models,
respectively. Workload models are defined as a probabilistic model representing different
potential workload behaviors, each depicting the arrival rate of users and transactions that
impact the application state [Gómez Sáez et al. 2016]. In the µ-topologies Discovery phase, a
set of viable application distributions is constructed. The definition of the application profile

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Utility-based Decision Making for Migrating Cloud-based Applications 1:5

0 100 200 300 400 500

Throughput (requests/s)
0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
Threshold

(a) QoS-aware Utility for the Application’s
Throughput

0 200 400 600 800 1000

Montly Cost (U$)
0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity

Threshold

(b) Cost-aware Utility for the Application’s
Operational Costs

Fig. 3: Utility Calculation & Trend Example

serves as the basis in the µ-topologies Ranking phase, which ranks each viable topology in
the µ-topology based on the expected utility, and using utility functions as the basis. Fig. 3
depicts how the shape of a utility function could look like when considering the QoS (Quality
of Service) in terms of the application’s throughput, and cost in USD Dollars.

Focusing on the QoS, there may exist an increase of the utility as the throughput increases
until a certain requirement threshold point, as the application is capable of serving more
requests (see Fig. 3). However, from such a point, the application’s utility may not significantly
vary, as the requirement is completely fulfilled, and therefore the utility maintains constant.
Focusing on the cost, it actually seems to behave in an adverse manner, as going from a
IaaS General Purpose VM to a Compute or Memory Optimized may negatively impact
the utility, since the operational costs increase. For the Web shop application depicted in
Fig. 1, provisioning a high I/O VM instance may negatively impact its utility, due to the
compute and memory intensive nature of such application. However, provisioning compute
and memory intensive VM instances during peak periods may significantly benefit the overall
revenues.

The utility-based evaluation of µ-topology models in SCARF consists of analyzing the
trade-off between the performance and the cost for viable application distributions. The utility
model assists in the decision making tasks in the Selection & Configuration phase. During
the production phase of the application, the Workload Evolution & Characterization phase
consists of retrieving performance data to analyze and build the workload and performance
evolution knowledge, using, e.g., monitoring techniques. Such knowledge can be leveraged,
in conjunction with the business revenue models, in the utility analysis, to move towards an
optimal distribution of cloud-based applications.

SCARM constitutes the second pillar in SCARF, and supports the life-cycle depicted in
Fig. 2 [Gómez Sáez et al. 2014]. Fig. 4 depicts the seven tasks of SCARM, and characterizes
them as manual (driven by application architects), automatic (performed by the tooling
support), and synergistic (as the interaction of both). Application architects are responsible in
SCARM for manually (i) modeling the application topology (Modeling), which is (ii) enriched
with business and operational requirements, and workload characteristics (Enrichment). The
enriched application topology model is then automatically processed in the (iii) KPIs &
WL Analysis task. In particular, application KPIs and workload attributes are analyzed in
order to (iv) discover compatible γ-topologies, and to construct and evaluate alternative
viable distributions of the application components, i.e. depicted through their µ-topologies
(Discovery & Evaluation). The evaluation of the constructed viable distributions is performed

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:6 Gómez Sáez et al.

9"9"©"San&ago"Gómez"Sáez"

R
e

se
a

rc
h

 Collabora)ve""
Loop"

Manual"

Automa)c"

Synergis)c"

Fig. 4: SCARM: Systematic Cloud-based Application (Re)Distribution Method

by calculating the utility of each µ-topology. Utility is leveraged towards ranking the different
µ-topologies to assist application architects when selecting a viable application distribution.

The (v) Deployment & Production task consist of provisioning the application stack
using existing orchestration technologies, such as the OpenTOSCA container [Binz et al.
2013]. During the production phase of the application, the following synergistic decision
making tasks take place: the (vi) Monitoring task captures real performance metrics, which
are leveraged by application architects to (vii) analyze the evolution of the application
performance and workload behavior in the Evolution Analysis task. The Collaborative Loop
in SCARM enables application architects to decide among redistributing the application
components or to continuously capture performance knowledge that can be exploited in
subsequent iterations. This work focus on the utility-based evaluation step of SCARM,
i.e., (iv), by means of using utility theory as the underlying model for the decision making
mechanism for distributing cloud-based applications.

3. UTILITY MODEL IN SCARF
This section presents a formal utility model geared towards the profitable distribution of
cloud-based applications in SCARF, using the Web shop application previously introduced
as example and depicting further distribution alternatives (see Fig. 1). For the scope of this
work, the SCARF utility model quantitatively represents the monetary cost and performance
trade-off of a viable distribution of an application (depicted as a µ-topology) spanning different
cloud services for a time period. This section first defines the variables in the model, which
are then used as the basis to formalize the utility functions.

3.1. Preliminary Definitions
Let’s first define the life time of an application as the family of sets Ψ = {Ψ1, ...,Ψm}, where
each Ψj , j = 1, ...,m is an ordered discrete time interval {t1, ..., tn} that corresponds to a
viable topology (µ-topology) used to provision and deploy an application. For example, if
an application is redistributed on a weekly basis, then each Ψm would be comprised by the
initial and end date of a concrete distribution, e.g., Ψ1 = {Mo 18.7.2016, ..., Su 24.7.2016},
Since a cloud-based application viable µ-topology is decomposed into an application specific
α-topology and multiple non-application specific (and reusable) γ-topology models (see
Sec. 2.1), let’s define:

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Utility-based Decision Making for Migrating Cloud-based Applications 1:7

22©	Santiago	Gómez	Sáez

Re
se
ar
ch

WebShop:	Web_App

Apache_HTTP_Server:
Web_Server

Ubuntu14.04_LTS:
Virt_Linux_OS

Product_DB:
SQL_DB

MySQL:	SQL_
RDBMS_Server

Ubuntu14.04_LTS:
Virt_Linux_OS

AWS_RDS_
m3.large:	
AWS_RDS

MySQL:	
SQL_DBaaS

AWS_Elastic
_Beanstalk:	
Application_
Container

WebShop_Frontend:	
PHP_App interacts_with

Apache_PHP_Module:
PHP_Container

AWS_EC2_t2.
medium:	AWS_EC2

AWS_EBS_gp2:	
DistributedStorage

alt_hosted_onhosted_on Application	specific Alternative	node

consists_of
consists_of

WebShop_Backend:	
WAR

consists_of

interacts_with

Apache_Tomcat:	
Servlet_Container

Ubuntu14.04_LTS:
Virt_Linux_OS

AWS_EC2_t2.
medium:	
AWS_EC2

AWS_EC2_m4.
xlarge:	AWS_EC2

Tα

T1
𝜸 T2

𝜸 T3
𝜸 T4

𝜸 T5
𝜸

Ti
𝝁

Fig. 5: Tα, T γ , and Tµ topologies for a sample Web Shop Application

— Tα as the set of application specific α-topology models {Tα1 , ..., Tαp }. Tα contains all
α-topology models, that are a result of architectural decisions made during the lifetime
of applications.

— T γ as the set of all available and reusable application non-specific γ-topologies {T γ1 ...T γq },
where each T γ represents the underlying resources, such as middleware or cloud services,
that can be used to host one or multiple application components (in other words, T γ can
be interpreted as a repository of all possible reusable γ-topologies).

— The set of viable application µ-topologies as Tµ = {Tµ1 , ..., T
µ
i | |Tµ| = |Ψ| ∧ ∀ T

µ
j , j =

1, ..., i ∃ tmap : Tµj 7→ Ψm ∧ fdist : Tα×T γ → Tµi }, where tmap is a function mapping
each Tµj with a concrete time interval Ψm in the application’s life time, and fdist is a
constructor function, which builds a concrete Tµj given its application specific α-topology
Tαp and the set of available reusable γ-topologies T γ . fdist relies on the usage of graph
morphisms presented in [Andrikopoulos et al. 2014].

— The subset τγ ⊆ T γ contains multiple sets τγv , v = 1, ..., q, where each set encloses
the T γu , u = 1, ..., q topologies that are part of a viable topology of an application
Tµj ε Tµ, j = 1, ..., i.

Taking the Web shop application µ-topology depicted in Fig. 5 for a time interval Ψ1,
the set Tα contains only one α-topology, which is depicted as double lines and consists of
three main tiers: (i) one front-end tier developed as a PHP application, one (ii) backend tier
developed in Java and delivered as a WAR package, and a (iii) backend SQL database. The
Web shop application µ-topology comprises an initial set T γ containing five γ-topologies.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:8 Gómez Sáez et al.

Each viable Tµj , j = 1, ..., i ε Tµ is constructed using the fdist function. For example, a
possible µ-topology for Tα1 can comprise the subset of γ-topologies τγ= {T γ1 , T

γ
3 , T

γ
4 } .

As yet, we defined the functional aspects of the application. However, non-functional
aspects, such as performance and cost, play a fundamental role in deciding among different
cloud offerings. Therefore, let’s denote the set of business and operational requirements
for an application α-topology as R = {R1, ..., Rj} . Each application requirement can be
evaluated using specific measurements for each time interval in Ψm . Therefore, we define:

— the family of measurement sets M = {M1, ...,Mv | v = 1, ..., j ∧ gmap : M → R},
where gmap maps each measurement element set Mv, v = 1, ..., j, with its corresponding
requirement in R, and

— the measurement sample m = {m1, ...,ms | s = 1, ...,m ∧ tmap : m → Ψ ∧ m ε Mv,
where tmap maps each measurement sample m with a time interval Ψm

For instance, for a requirement R1 associated with the latency of the application, the set of
measures M1 = {{1.5ms, ..., 2ms}, ..., {12.5 req/s, ..., 9 req/s}} would contain the average
daily latencies for each time interval Ψ, e.g., for Ψ1 = {Mo 18.7.2016, ..., Su 24.7.2016}.

The application workload is comprised by the probabilistic distribution of transactions that
arrive over a time interval and performed by the different users of the application [Gómez
Sáez et al. 2016]. Focusing on the workload behaviors that an application may receive over
time, we define the set of application workload behaviors as W = {W1, ...,Wk | W ∼ D}.
W is probabilistically distributed over each time interval Ψm ε Ψ. For example, a Poisson
distribution with λ = 4 may be used to describe the occurrence of a workload in a time
interval Ψ. Then, W ∼ P (λ = 4).

3.2. Utility Function
The utility function, defined jointly by business and application architects, u : Tµ × R ×
M ×W ×Ψm → R, for an application viable distribution Tµ, its set of requirements R and
associated measures M , the set of workloads W , and its time interval Ψm ε Ψ is defined as:

u(Tµ, R,M,W,Ψm) = revenue(Tµ,M,W,Ψm) × sat(Ψm,W)− cost(Tµ, R,M,Ψm) (1)

where revenue : Tµ ×M ×Wx × Ψm → R is a function calculating the application’s
expected revenue during the time interval Ψm, and cost : Tµ ×M ×W × Ψm → R is a
function estimating the associated resources costs for the application viable topology Tµ.
The revenue and cost functions are depicted in Sec. 3.3 and Sec. 3.4, respectively. The
application’s utility is influenced by the overall satisfaction of its end users, which can be
calculated by the function sat : Ψ×W → R≥0, and impacts the total application’s revenue.
One possible definition of the sat(Ψ,W) can be realized in terms of customer attrition:

sat(Ψ,W) = usergained(Ψ,W)
userloss(Ψ,W) (2)

where usergained : Ψ ×W → I≥0 returns the average amount of end users gained in Ψ
and userloss : Ψ×W → I≥0 the average amount of turned over end users. For instance, for
the workloads w1 and w2 during Ψ2, sat(Ψ2, w1) = 10 and sat(Ψ2, w2) = 2, 5, respectively.

As supported in SCARM, cloud-based applications can be redistributed. Therefore, the
utility model must consider the impact on the utility when redistributing the application
components, i.e. when adopting a new viable topology Tµ. Marginal utility is used to
calculate the difference in utility when redistributing the application. The marginal utility for
an application viable topology Tµ, given the application requirements R, its corresponding
measurements M , and the workload behaviors W , is defined as:

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Utility-based Decision Making for Migrating Cloud-based Applications 1:9

4 u(Tµ,Ψ) = u(Tµi , R,M,W,Ψm) − u(Tµi−1, R,M,W,Ψm−1) − costred(Tµi−1, T
µ
i) (3)

where costred : Tµi−1 × T
µ
i → R is a function calculating redistribution costs due to the

transition from Tµi−1 to Tµi . For instance, a redistribution of the web shop application
depicted in Fig. 5 from a Tµ1 to a new Tµ2 in the first week of December 2016 – previous to
the Christmas season– could entail the migration of the web shop’s front-end to a cluster of
two VMs, each Ubuntu-based Amazon EC2 t2.large using the EBS gp2 elastic storage system
for caching purposes. Therefore, redistributing the application would consist of provisioning
Tµ2 during Ψ2. The calculation of the marginal utility (see Eq. 3), therefore, entails the
calculation of the redistribution costs costred(Tµ1 , T

µ
2) for migrating the front-end to an

AWS Beanstalk container, such as the costs produced for a planned downtime, e.g., 2500
USD. Therefore, considering the new utility u(Tµ2 , ...) = 25000 USD and the previous utility
u(Tµ1 , ...) = 15000 USD , and an infrastructure cost cost(Tµ2 , ...) = 5000 USD, the marginal
utility 4 u(Tµ2 ,Ψ2) = 7500 USD.

Focusing on calculating the utility for the lifetime of the application Ψ, denoted as multiple
time intervals Ψm, we can define the utility of the application w.r.t. its life time as:

u(Ψ) =
|Ψ|∑
j=1

βj · u(Tµ, R,M,W,Ψj) (4)

where βj = [0, 1],
∑
j βj = 1, are the weights reflecting the preference over the time

intervals Ψ in the life time of the application. For example, during a business year, there may
be monthly periods where an application depicted by its topology Tα may be the associated
with the primary line of business. In such a case, βj ≈ 1 for the corresponding months.

3.3. Revenue Function
So far, we presented the utility function, geared towards the profitability of cloud-based
applications. For the remainder of this section, we reuse the viable application topology Tµ2
previously introduced for exemplification purposes. The first fundamental block building
such a function is the revenue function, which determines the expected monetary revenue
of an application distribution for a time interval Ψm ε Ψ. More specifically, the revenue is
defined as:

revenue(Tµ,M,W,Ψm) =
∑
wεW

P (w) · [((1− ε) · tpu(w)) · |Ψm| · rpu(Ψm)) ·

users(w) · av(Tµ,Ψm,M)]
(5)

where P (w) is the probability for a workload behavior w ε W in the time interval Ψm.
Lets assume a constant workload w1 with P (w1) = 0.05, and a periodical workload w2
with P (w2) = 0.3. The function tpu : W → R≥0 depicts the average number of economic
transactions per end user (customer) in a workload w ε W , and ε represents the average
transaction error rate of the application in the workload w ε W . For example, for the
workloads w1 and w2 previously depicted, the average number of transactions per end user
may be 1 and 3 transactions, respectively, while the average transaction error rate of the
application ε could be 0.03.

The function rpu : Ψ→ R is a given business function estimating the average monetary
revenue per end user during the time interval in Ψ, which is typically developed by business
architects and based on the analysis of seasonal monetary revenues. One possible example
could be a step function depicting the average revenue per user per transaction on a monthly
basis, returning an average of 80 USD per user for the months of December and January

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:10 Gómez Sáez et al.

(Christmas period), and 55 USD for the remainder months. The number of end users
constituting a workload W is returned by the function users : W → R≥0.

The availability of the underlying environment highly impacts the application’s revenue.
In this utility model, the availability function av : Tµ ×Ψ×M → [0, 1] returns the average
proportional uptime in Ψ of the cloud services depicted in τµ ε Tµ. Considering the uptime
described in the SLA of Amazon Web Services (AWS)2, the av(Tµ2 ,Ψ2, ...) is 0.9995.

Based on the previous parameter values, the revenue for Tµ2 during the time interval Ψ2,
for the workloads w1 and w2 in W , for 3500 users during Ψ2, for an average error rate of
0.03, and for a set of observed measures M can be calculated as follows:

revenue(Tµ2 ,M,W,Ψ2) = 0.05 · [((1− 0.03) · 1 tx/user) · 2months · 80 USD)·
3500 user · 0.9995] +

0.3 · [((1− 0.03) · 3 tx/user) · 2months · 80 USD)·
3500 user · 0.9995)] =

0.05 · 540484 + 0.3 · 1621452 = 27024.2 + 486435.6 ' 513000(USD)

(6)

3.4. Cost Function
A second influence factor in the utility function is the resources utilization costs (see Eq. 1).
Given a viable application distribution Tµ, the set of requirements R, and the application
workload W for a time interval Ψm ε Ψ the cost function cost(Tµ, R,M,Ψm) is defined as:

cost(Tµ, R,M,Ψm) = Cfixed(Tµ, R,Ψm) + Cvariable(Tµ, R,M,Ψm) (7)

where the function Cfixed : Tµ × R × Ψ → I≥0 returns the fixed costs for provisioning
and maintaining the cloud services in Tµ, based on the set of requirements R and the time
interval Ψm. Cfixed(Tµ, R,Ψm) is defined as:

Cfixed(Tµ, R,Ψ) = Cfixed(gγ(Tµ), R,Ψ) =
∑
δ ε τγ

Cprovider(δ,R,Ψ) (8)

where gγ : Tµ → τγ returns the set τγ ⊆ T γ of γ topologies in a Tµ, and Cprovider :
δ ×R×Ψ→ R≥0 calculates the provisioning and maintenance costs for every sub-topology
τγq ε τ

γ . Focusing on the Web shop application example in Fig. 5 distributed w.r.t. Tµ2 during
the time interval Ψ2:

Cfixed(gγ(Tµ2), R,Ψ2) = Cfixed({T γ1 , T
γ
3 , T

γ
4 }, R,Ψ2) =

∑
δ ε τγ

Cprovider(δ,R,Ψ2) =

Cprovider(T γ1 , R,Ψ2) + Cprovider(T γ3 , R,Ψ2) + Cprovider(T γ4 , R,Ψ2)
(9)

However, the fulfillment of the set of requirements R depends on (i) the performance
offered by a cloud provider, and on (ii) the application workload behavior. Therefore, we
must also consider incurred costs due to the scaling of resources to satisfy every requirement
in the set R, e.g., scaling out a virtual machine to satisfy a workload peak interval. Let’s
define the function calculating the variable costs Cvariable : Tµ × R ×M × Ψ → R≥0 are
defined as:

Cvariable(Tµ, R,M,Ψm) = Cvariable(g(Tµ), R,M,Ψm) =
∑
δ ε τµ

∑
r ε R

Cadapt(δ, r,M,Ψ) (10)

2Amazon Web Services (AWS) SLA: https://aws.amazon.com/ec2/sla/

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Utility-based Decision Making for Migrating Cloud-based Applications 1:11

where Cadapt(τµ, R,M,Ψ) returns the sum of incurred scaling (additional) costs in τµ

during the time interval Ψ to satisfy every requirement in R evaluated through each measure
in M . In line with the previous example (see Fig. 5), a potential adaptation cost to satisfy
a requirement R1 = databasethroughput ≥ 10 reqs./sec. could consist of provisioning an
additional VM instance t2.medium in τγ4 during a time interval Ψ2. More specifically, one
possible definition of cadapt can be:

Cadapt(δ,R,M,Ψ) =
{
Cprovider(δ,R,Ψ) if ev(R,M,Ψ)
0 otherwise

where ev : R×M ×Ψ→ B is a function that evaluates the fulfillment of a requirement in
R for a time interval Ψ and w.r.t. its measure sample in M . The previously introduced utility
model can be leveraged in the cost- and performance-efficient distribution of applications. The
remainder of this work focuses on evaluating the utility model under different distribution
scenarios.

4. EVALUATION: MEDIAWIKI CASE STUDY
The MediaWiki3 application serves as the underlying technology supporting the Wikipedia4

project, part of the Wikimedia Foundation (WMF)5. MediaWiki fundamentally aggregates
two tiers: a (i) front-end PHP application comprising the business logic and caching function-
alities, and a (ii) backend SQL database (see Fig. 1 in Sec. 2.1). It typically serves several
million of users on a daily basis, and its revenue model is primarily based on donations.
The WMF identified in its Y2016 Annual Plan6 a set of potential risks for the Foundation’s
mission, among which are the following: (i) failure in technology infrastructure cause a
disruption of WMF operations, and (ii) efforts to build large scale, high performance features
result in delays or failures. Migrating MediaWiki to a cloud environment opens a wide
set of possibilities and challenges, as it can leverage the on-demand usage of resources,
high availability, and a reduction of maintenance and management efforts of on-premise
infrastructure resources. In the remainder of this section we present the conceptual and
empirical evaluation of the previously presented utility model by applying it to Wikipedia.

4.1. Methodology & Setup
The evaluation focuses on (i) generating a first set of viable topologies (Tµ) of MediaWiki,
by applying the Discovery & Evaluation step of SCARM (see Fig. 4 in Sec. 2), and on (ii)
evaluating the different Tµ by ranking the viable topologies using different utility models.

4.1.1. Application Viable Distributions. The generated viable application distributions are
depicted in Table I, comprising VM- and container-based services from two major cloud
providers, AWS7 and Microsoft Azure8. This first set of experiments are scoped to a single-
provider distribution of applications, i.e., hosting the whole MediaWiki stack within one
provider, but among different (types of) services. Future experimental rounds are planned
to evaluate multi-cloud distributions and the impact of performing a redistribution of the
application tiers.

Towards minimizing network latency to both AWS and Azure infrastructures, we utilized
AWS and Azure EU regions, both provisioned in Ireland. Table I depicts the set of eval-
uated distributions {Tµ1 , ..., T

µ
8 }. These entail the usage of VM- and containerized-based

3MediaWiki: https://www.mediawiki.org
4Wikipedia Project: https://www.wikipedia.org
5Wikimedia Foundation: https://wikimediafoundation.org
6WMF Y2016: https://upload.wikimedia.org/wikipedia/foundation/4/43/WMF2015-16AnnualPlan.pdf
7AWS: https://aws.amazon.com
8Microsoft Azure: https://azure.microsoft.com/en-us/

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:12 Gómez Sáez et al.

Table I: Evaluation Setup - Viable Distributions (Tµ) of the MediaWiki Application. Prices
are calculated for the on-demand usage. Storage and data transfer costs are billed separately.

Tµ Service MediaWiki
Front-end

MediaWiki
Back-end

Auto-
Scaling

Region Total Price
(USD/h)

Tµ1 EC2 m4.large m4.large 7 EU (IR) 0.234
Tµ2 EC2 m4.xlarge 7 EU (IR) 0.264
Tµ3 EC2 + RDS m4.large db.m4.large 7 EU (IR) 0.325
Tµ4 Beanstalk (2x) t2.small db.m4.large 3 EU (IR) (2x) 0.028 + 0.193
Tµ5 ECS (2x) t2.small db.m4.large 3 EU (IR) (2x) 0.028 + 0.193
Tµ6 VM DS2 DS2 7 EU (IR) 0.292
Tµ7 VM DS3 7 EU (IR) 0.292
Tµ8 Container (2x) DS1 DS2 3 EU (IR) (2x) 0.073 + 0.146

Amazon Web Services Windows Azure Services

environments, with and without auto-scaling capabilities. W.r.t. the autoscaling, the cluster
consisted of a minimum of one and a maximum of two VM instances, with the scaling
trigger configured when the CPU usage exceeds 50%. In the scenarios utilizing container-
ized environments, we developed a set of Docker images available in GitHub9. Due to the
incompatibility of MediaWiki10 with the SQL servers offered in Microsoft Azure, we cannot
consider the deployment of the MediaWiki back-end database in an Azure DBaaS offering.

The prices depicted in Table I are the total hourly prices for the front- and back-end tier
stacks on the different services. Storage, load balancer instances, and network egress charges
are calculated separately, as these depend on the application profile and are influenced
by the auto-scaling mechanism. Therefore, these are part of the fixed and variable costs
Cfixed(Tµi , ...) and Cvariable(Tµi , ...), respectively. The availability function is extracted from
the SLAs provided by the cloud providers. More specifically, the availability function
av(Tµ,Ψm,M) is defined as a constant function, which returns the availability defined in
the cloud provider’s SLA for each Tµi .

4.1.2. Workload Analysis, Generation & Execution. A second step consists of analyzing and
generating a system load that emulates the usage of MediaWiki. Wikidumps11 provides real
access traces, number of users, and databases dumps of Wikipedia. Therefore, we leverage
such data to emulate the load in our system. In particular, since we don’t aim at hosting a
complete Wikipedia mirror site, but to evaluate the defined concepts and models using a
realistic workload behavior and data as the basis, we generated a scaled version of such a
workload. We selected the English Wikipedia pages data, access traces, and users access,
for the time interval comprised from Jan. 1 2016 to Jan. 31 2016. The English Wikipedia
represents ≈ 46% of all Wikimedia projects, and received the highest load (7,869M views) in
January 2016, showing a 9% increase w.r.t. the previous year, according to Wikistats12.

Figure 6 depicts the hourly access traces of the English Wikipedia for January and the
generated access traces for the experiments. The workload generation consists of: (i) cleaning
the English Wikipedia access traces (e.g. error requests), (ii) scaling the number of requests
to Wiki pages using a 1000:1 factor, and (iii) verifying that the generated workload still
correlates users and requests in a similar manner w.r.t. the original. Correlation showed
a minor decrease of the pearson correlation among requests and users in the generated

9MediaWiki Docker: https://github.com/sgomezsaez/SCARF-Evaluation/tree/master/mediawiki\ docker
10MediaWiki Compatibility: https://www.mediawiki.org/wiki/Compatibility
11Wikidumps: https://dumps.wikimedia.org/
12https://stats.wikimedia.org/EN/TablesPageViewsMonthlyCombined.htm

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Utility-based Decision Making for Migrating Cloud-based Applications 1:13

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
To

ta
l

1e7 Hourly Number of Wiki Page Requests

Sa
t 2

01
6-

01
-0

2
Su

n
20

16
-0

1-
03

M
on

 2
01

6-
01

-0
4

Tu
e

20
16

-0
1-

05
W

ed
 2

01
6-

01
-0

6
Th

u
20

16
-0

1-
07

Fr
i 2

01
6-

01
-0

8
Sa

t 2
01

6-
01

-0
9

Su
n

20
16

-0
1-

10
M

on
 2

01
6-

01
-1

1
Tu

e
20

16
-0

1-
12

W
ed

 2
01

6-
01

-1
3

Th
u

20
16

-0
1-

14
Fr

i 2
01

6-
01

-1
5

Sa
t 2

01
6-

01
-1

6
Su

n
20

16
-0

1-
17

M
on

 2
01

6-
01

-1
8

Tu
e

20
16

-0
1-

19
W

ed
 2

01
6-

01
-2

0
Th

u
20

16
-0

1-
21

Fr
i 2

01
6-

01
-2

2
Sa

t 2
01

6-
01

-2
3

Su
n

20
16

-0
1-

24
M

on
 2

01
6-

01
-2

5
Tu

e
20

16
-0

1-
26

W
ed

 2
01

6-
01

-2
7

Th
u

20
16

-0
1-

28
Fr

i 2
01

6-
01

-2
9

Sa
t 2

01
6-

01
-3

0
Su

n
20

16
-0

1-
31

M
on

 2
01

6-
02

-0
1

2.5

3.0

3.5

4.0

4.5

M
ea

n

Hourly Number of Requests per Wiki Page

(a) Hourly Summary Requests - Original

0

200

400

600

800

1000

1200

1400

1600

1800

To
ta

l

Hourly Number of Wiki Page Requests

Sa
t 2

01
6-

01
-0

2
Su

n
20

16
-0

1-
03

M
on

 2
01

6-
01

-0
4

Tu
e

20
16

-0
1-

05
W

ed
 2

01
6-

01
-0

6
Th

u
20

16
-0

1-
07

Fr
i 2

01
6-

01
-0

8
Sa

t 2
01

6-
01

-0
9

Su
n

20
16

-0
1-

10
M

on
 2

01
6-

01
-1

1
Tu

e
20

16
-0

1-
12

W
ed

 2
01

6-
01

-1
3

Th
u

20
16

-0
1-

14
Fr

i 2
01

6-
01

-1
5

Sa
t 2

01
6-

01
-1

6
Su

n
20

16
-0

1-
17

M
on

 2
01

6-
01

-1
8

Tu
e

20
16

-0
1-

19
W

ed
 2

01
6-

01
-2

0
Th

u
20

16
-0

1-
21

Fr
i 2

01
6-

01
-2

2
Sa

t 2
01

6-
01

-2
3

Su
n

20
16

-0
1-

24
M

on
 2

01
6-

01
-2

5
Tu

e
20

16
-0

1-
26

W
ed

 2
01

6-
01

-2
7

Th
u

20
16

-0
1-

28
Fr

i 2
01

6-
01

-2
9

Sa
t 2

01
6-

01
-3

0
Su

n
20

16
-0

1-
31

M
on

 2
01

6-
02

-0
1

5

10

15

20

25

30

35

M
ea

n

Hourly Number of Requests per Wiki Page

(b) Hourly Summary Requests - Generated Workload
Sample

Fig. 6: Wikipedia Workload Analysis January 2016

workload of ≈ 0.05. The workload was generated using Python 2.7 SciPy13, and comprises a
total of 632K requests and 79K users.

The load execution and the processing of results are driven in Apache JMeter 2.914 and
Python scripts, respectively. The workload generation scripts, generated load, as well as the
load profile used in JMeter, are available in GitHub15.

4.1.3. Revenue per User & Satisfaction Model. A third step in the evaluation consists of
calculating the average revenue per user, which is typically derived by business architects for
the revenue model (see Sec. 3.3). Revenue models are built based on past data and are used
in order to predict and establish business revenues and objectives, respectively. We analyzed
the English Wikipedia revenue in the WMF Fundraising Data16, by means of processing the
total daily income, which is based on donations (see Fig. 7). The WMF regularly organizes
campaigns that aim at significantly increasing the number of donations during a time period,
such as the one driven in December 201517 for the English Wikipedia, which consisted
of adding a banner that redirects to their donations platform. The peak depicted at the
beginning of January 2015 is due to the residuum of such campaign, i.e., users which donated
after the campaign ended. The revenue for January 2016 follows an exponential function,
as described in Fig. 7, and the average revenue fit is 0.000534 USD/user. However, such a
function may only fit for January 2016, and not for other months.

W.r.t. the satisfaction model, we followed in Eq. 11 a similar user survival analysis heuristic
as in the WMF Measuring User Search Satisfaction Schema 2.0.018. We defined the maximum
waiting time for a user to retrieve a Wiki page to 30s. Beyond such interval, we consider the

13SciPy: https://www.scipy.org
14Apache JMeter: http://jmeter.apache.org
15SCARF-Evaluation: https://github.com/sgomezsaez/SCARF-Evaluation/
16WMF Fundraising Data: https://frdata.wikimedia.org
17https://meta.wikimedia.org/wiki/Fundraising#December 2015 Campaign Launch Update
18Measuring User Search Satisfaction Schema 2.0.0: https://meta.wikimedia.org/wiki/Research:Measuring
User Search Satisfaction

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:14 Gómez Sáez et al.

Fig. 7: Wikimedia Foundation Revenue - January 2016

user to abandon the application. Besides, we also considered the total number of unsuccessful
requests, i.e., requests with an HTTP return code 50x. The satisfaction is defined as:

sat(Ψ,W) = 1− reqs>30s(Ψ,W) + reqserror(Ψ,W)
reqstotal(Ψ,W) (11)

where reqs>30s(Ψ,W) : Ψ×W → I≥0 returns the total number of requests in the workload
W with a latency greater than 30s, reqserror(Ψ,W) : Ψ×W → I≥0 returns the total number
of unsuccessful requests in the workload W , and reqstotal(Ψ,W) : Ψ×W → I≥0 returns the
total number of requests in the workload W .

4.1.4. Utility Calculation & Comparison. The last step in the evaluation analyzes the utility for
each Tµ viable distribution using Eq. 1. We first derived the average revenue per user in Eq. 5
and calculated the expected infrastructure costs (see Eq. 7) for the different utilized services.
Subsequently, we calculated the utility of the different MediaWiki Tµ viable distributions and
ranked them accordingly. As utility can be calculated with different functions, we compared
our approach (see Eq. 1) with further functions (see Eq. 12), considering only infrastructure
costs, as in [Andrikopoulos et al. 2014], or the cloud provider’s availability:

uopex(Tµ, R,M,W,Ψm) = opexmax − opex(Tµ, R,M,Ψm)
uav(Tµ, R,M,W,Ψm) = av(Tµ,Ψm,M) (12)

where opexmax represents the maximum operational cost, and av(Tµ,Ψm,M) returns the
average expected uptime for the providers involved in Tµi . The outputs of such calculations
are ranked and subsequently plotted using Python 2.7 Pyplot libraries.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Utility-based Decision Making for Migrating Cloud-based Applications 1:15

Tµ1 Tµ2 Tµ3 Tµ4 Tµ5 Tµ6 Tµ7 Tµ8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A

v
e
ra

g
e
 E

rr
o
r

R
a
te

Average Error Rate per Tµi Scenario

(a) Average Request Error Rate per Tµi

Tµ1 Tµ2 Tµ3 Tµ4 Tµ5 Tµ6 Tµ7 Tµ8
0

2

4

6

8

10

A
v
e
ra

g
e
 L

a
te

n
cy

 (
s)

Average Latency per Request per Tµi

(b) Average Latency per Request per Tµi

Tµ1 Tµ2 Tµ3 Tµ4 Tµ5 Tµ6 Tµ7 Tµ8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
o
ta

l
B

y
te

s
T
ra

n
sf

e
rr

e
d

1e10
Total Bytes Transferred per Tµi Scenario

(c) Total Bytes Transferred per Tµi

Tµ1 Tµ2 Tµ3 Tµ4 Tµ5 Tµ6 Tµ7 Tµ8
0

2

4

6

8

10

12

14

16

18

E
x
p
e
ri

m
e
n
t

D
u
ra

ti
o
n
 (

h
)

Experiment Duration per Tµi

(d) Experiment Duration per Tµi

Fig. 8: Experiment Results for the Tµi Alternative Distributions

4.2. Experimental Findings
This section tailors the experimental findings into (i) a performance analysis focusing on
metrics relevant to the utility model previously introduced, and (ii) the utility calculation
and ranking of the different Tµi viable distributions, using different utility functions.

4.2.1. Experimental Results. Fig. 8 details the observed performance latency of the different
Tµi viable distributions. In particular, when analyzing the average request error rate for each
Tµi , we observe that the error rate maintains steady (. 6%) among the viable distributions
Tµ1 , T

µ
2 , T

µ
3 , T

µ
6 , T

µ
7 , and Tµ8 , observing the higher error rates when consuming AWS services.

In contrast, Tµ4 and Tµ5 show approximately a 90% increase of the error rate w.r.t. the
minimum observed (≈ 0.056 for Tµ3). Such a large difference is due to the overload observed
in both the AWS load balancer and the VM instances, which returned for most of the
requests with Service Unavailable or Gateway Timeout errors, and consumed in average

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:16 Gómez Sáez et al.

≈ 90− 100% of the CPUs. Such a high consumption impacted the auto-scaling mechanism,
which provisioned permanently 2 VM instances in the cluster. A Tµi application distribution
with a high error rate has a negative impact on the utility, and on the position of such a Tµi
in the ranking. SCARF does not discard viable distributions, but ranks them according to
its utility. This ranking serves as a guidance for application architects for selecting a viable
distribution of their application.

The average hourly latency in Fig. 8b depicts a performance increase of ≈ 45% when
deploying the full MediaWiki stack in a VM, in contrast to the scenarios hosting the front-end
and back-end in separate VMs. When using a DBaaS to host the back-end database (Tµ3),
there exists a minor performance decrease of ≈ 10% w.r.t. distributing both the front- and
back-end in separate VMs. However, there exists a fair decrease of management tasks and
their corresponding costs, due to the fact that DBaaS offerings transparently administer
and manage database servers. The MediaWiki distribution in the Azure Container Service
shows increased latency of ≈ 40% when distributing both front-end and back-end in separate
Azure VMs. Focusing on the cloud providers, AWS offers on average ≈ 6% performance
increase for the scenarios distributing the MediaWiki front- and back-end in separate VMs,
and ≈ 1% for the scenarios hosting the whole MediaWiki stack in a VM.

W.r.t. the data transfer for each scenario (see Fig. 8c), we can observe that for the
scenarios comprising the Tµ1 , T

µ
2 , T

µ
3 , T

µ
6 , T

µ
7 , and Tµ8 viable distributions, a total of ≈ 29GB

are transferred between the load driver and the MediaWiki application. However, such
amount of data transferred significantly decreases in the viable distributions Tµ4 and Tµ5 ,
since the majority of the responses consist of error codes and messages, rather than the
requested Wiki pages. The total experiment duration for each Tµi is depicted in Fig. 8d and
conforms with the observed latency. The viable distributions Tµ5 and Tµ8 consumed most of
the time in comparison to the remainder Tµi viable distributions.

Since the MediaWiki is a read-intensive application, i.e., heavily searches and retrieves
Wiki content, we observe a performance degradation when distributing the MediaWiki front-
and back-ends in separate VMs or DBaaS services. However, such a deviation is not significant
if we consider the benefits of using specialized services, such as DBaaS offerings, in the sense
that administration and management costs of the back-end database significantly decrease.
When using container clusters, a performance degradation was also observed during runtime.
Considering and measuring the provisioning and deployment time of containers may, however,
overturn such results, and are planned as future work by means of analyzing the utility when
redistributing the application. In the following section, we utilize the experimental results to
evaluate the different Tµi using the utility models previously introduced, considering the (i)
application profitability, (ii) operational costs, and (iii) cloud infrastructure availability.

4.2.2. Utility Ranking & Analysis. The usage of utility as the underlying model for deci-
sion making can considerably assist application and business architects to prosper in the
distribution of their applications among cloud services and providers. In the context of
this work, we utilize the utility models to evaluate and rank the Tµi viable distributions.
More specifically, we first apply the utility function depicted in Eq. 1, and compare it with
further utility functions, which only consider the operational expenses or the cloud provider’s
availability (see Eq. 12). The utility results are depicted in Fig. 9 and the ranking of Tµi
viable distributions consists of an ordered preference structure built upon the calculation of
the different Tµi viable distributions (see Eq. 13). When utilizing the utility function depicted
in this work and used in SCARF, results show that the optimal viable distribution is Tµ7 ,
which returns ≈ 480USD (US Dollars) for the evaluated period. Due to the low performance
and high error rate observed in the Tµ4 and Tµ5 viable distributions, such viable distributions
offer the lowest utility, ≈ 60USD and ≈ 1USD, respectively.

When using the utility function that exclusively focuses on the expected operational
costs (see Eq. 12), we see that the optimal viable distributions are Tµ7 , Tµ6 , and Tµ8 . This

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Utility-based Decision Making for Migrating Cloud-based Applications 1:17

Tµ1 Tµ2 Tµ3 Tµ4 Tµ5 Tµ6 Tµ7 Tµ8
0

100

200

300

400

500

u
ti

lit
y
 (

U
$

)

Utility Model - Profitability Utility Model - Cost

Fig. 9: Experimental Results - Utility Analysis & Comparison

is due to lower incurred storage and network transfer costs offered in Azure. Since only
the infrastructure costs are considered, viable distributions like Tµ2 are not considered as
favorable distributions, which in practice offer a better performance. Moreover, Tµ4 is not
ranked as a less favorable distribution, therefore negatively impacting in the selection of
a viable Tµi distribution due to its low performance and high error rate. If we consider
the utility function that exclusively focuses on the availability, as described in Eq. 13, we
cannot establish a strict preference order, since both AWS and Azure express a guaranteed
99.95% uptime availability for VMs provisioned in the same availability zone. The lack of
performance knowledge in the utility model can, therefore, negatively impact in the decision
making tasks, as viable distributions offering a low operational costs may provide a degraded
performance and, therefore, a low monetary return.

SCARF Utility : Tµ7 � T
µ
2 � T

µ
6 � T

µ
1 � T

µ
3 � T

µ
8 � T

µ
4 � T

µ
5

Cost : Tµ7 � T
µ
6 � T

µ
8 � T

µ
2 � T

µ
1 � T

µ
4 � T

µ
3 � T

µ
5

Availability : Tµ1 � T
µ
2 � T

µ
3 � T

µ
4 � T

µ
5 � T

µ
6 � T

µ
7 � T

µ
8

(13)

Focusing on the sensitivity of the SCARF utility model, it is mainly influenced by the
parameters of its three fundamental functions revenue(Tµ,M,W,Ψm), sat(Ψm,W) and
cost(Tµ, R,M,Ψm) depicted in Sec. 3.1. The revenue function revenue(Tµ,M,W,Ψm) is
mainly impacted by the (i) application distribution, the (ii) observed performance, and
the (iii) business revenue during Ψm. Focusing on the former, an application distribution
Tµ offering a higher availability and lower error rate ε increases the application’s revenue,
therefore increasing the application’s utility. A low performance negatively impacts the
revenue of the application, as it is capable of serving a lower amount of transactions per user
tpu(w) for the each workload w. Lastly, a higher business revenue per user rpu(Ψm) elicits a
higher overall application revenue, therefore increasing the application’s distribution utility.

The end user satisfaction sat(Ψm,W) proportionally impacts the application’s revenue,
in the sense that a higher end user satisfaction increases the application’s utility. The
satisfaction function is domain-specific. For instance, the MediaWiki satisfaction Function 11

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:18 Gómez Sáez et al.

sets a threshold of 30s for successful requests. A lower threshold would imply a more rigid
computation of the satisfaction, by triggering a decrease of the end user’s satisfaction, and a
reduction of the overall application’s utility. Lastly, the cost function cost(Tµ, R,M,Ψm)
negatively impacts the application’s utility. In particular, a higher application distribution
cost lowers the application utility. Since the application’s cost depends on the Cfixed(Tµ, ...)
and Cvariable(Tµ...), the variation of any of its parameters negatively or positively impact
the application’s utility, if such costs increase or decrease, respectively.

5. DISCUSSION
The previous sections presented and evaluated the utility model in SCARF. Such a model
allows to rank viable cloud-based application distributions, depicted as viable topologies Tµi ,
using utility theory as the basis. In summary, the utility model (i) allows application and
business architects to compute and analyze the trade-off between cost and performance when
hosting their applications in the cloud, and (ii) serves as a mechanism to rank alternative
viable topologies w.r.t. business and operational performance and cost requirements.

The previous empirical evaluation demonstrated the benefit of using the proposed utility
model, in comparison with only considering operational costs or availability as decision
support for selecting cloud services. Although the current utility model can be leveraged
for efficiently distributing applications in the cloud, there are limitations to both the model
itself and its evaluation: (i) cost calculation in SCARF’s utility function is currently limited
to linear cost models, such as hourly utilization, or reserved instances. More complex cost
models, such as spot instances, are not yet supported in SCARF, as these require more
complex analytical models. W.r.t. the experiments, scenarios only consider single-cloud
distributions of applications, i.e., deploying the whole application stack in one cloud provider.
We are aware of such a limited scope in this first set of experiments, and plan to go a
step further, e.g., (i) focusing on multi-cloud distribution scenarios, (ii) evaluating the
effectiveness of application redistributions, and (iii) providing a cookbook on the necessary
steps for migrating such applications to the cloud.

6. RELATED WORKS
Optimization of QoS in the cloud can be organized into two main categories: (i) resources
management and allocation in cloud environments, and (ii) design support and optimization
frameworks for migrating applications to the cloud. Bellow the first category, utility is
used (i) in management of cloud resources or (ii) in autonomic computing. Utility-based
techniques are typically used in IaaS environments for scheduling VMs. Minarolli and
Freisleben analyze the trade-off between QoS and operational costs and look into maximizing
a global utility in a IaaS environments [Minarolli and Freisleben 2011b]. The authors consider
CPU allocation and costs per CPU, and calculate the utility when allocating virtual machines
in physical nodes. Similarly, Goudarzi and Pedram [Goudarzi and Pedram 2011] analyze the
user’s observed response, and focus on optimizing the processing, memory, communication
resources, and service levels. Focusing on maximizing revenue in IaaS environments, Hong
and Baochun propose an infrastructure revenue model based on dynamic pricing [Xu and
Li 2013]. In storage services, Strunk et al. use utility functions to provision and maintain
distributed storage systems [Strunk et al. 2008]. However, the previous approaches focus on
independently optimizing concrete types of cloud services, such as VMs or storage services.

In design and decision support systems for migrating applications to the cloud, model
transformation and simulation techniques are common approaches. CloudMig [Frey and
Hasselbring 2011] builds on an initial topology and utilization model that is transformed
to optimize the configuration of VM resources in the application model. The evaluation
and comparison of generated architectures is not yet supported in CloudMig. Similarly,
the MODACloud [di Nitto et al. 2013] and CloudML [Brandtzæg et al. 2012] approaches
focus on providing a multi-dimensional early design support of applications by applying

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Utility-based Decision Making for Migrating Cloud-based Applications 1:19

model transformation techniques and code generation for multi-cloud applications. However,
empirical evaluations for these approaches focus on provisioning VMs in a multi-cloud
environment, rather than considering further application deployment approaches, such
as container-based. The SeaClouds EU Project19 provides a Cloud Service Orchestrator
capable of provisioning and managing application components spanned among multiple
Cloud environments [Brogi et al. 2014]. The CACTOS EU Project20 is possibly the closest
approach to the fundamentals developed as part of this work. as it fits provider resources
for diverse application workloads. Focusing on explicitly comparing cloud providers, the
CloudCmp framework provides assessment in terms of elasticity, persistent storage, and
networking services in different cloud providers, and works towards creating an end-to-end
benchmark for provider’s optimization [Li et al. 2010]. The previous approaches present
the following drawbacks. Firstly, these introduce complex tasks, such as the creation of
simulation models, which often require the intervention of domain experts. These cause
an overhead in the development and (re)deployment tasks of applications. Secondly, they
mostly focus on running applications hosted on VM environments, rather than considering
the performance and cost of further deployment options, such as containerized environments.
Therefore, these do not fully exploit the usage of cloud services to evaluate and optimize the
profitability of cloud-based applications.

Works in the domain of optimization of cloud-based application viable distributions
mostly focus on estimating operational expenses and QoS objectives. Miglierina et al. aim at
optimizing availability and operational expenses [Miglierina et al. 2013], by means of defining
a Palladio-based application topology model, which is used to simulate the application
performance. The MOCCA framework [Leymann et al. 2011] introduces variability points
in the application topology to cope with possible alternative deployments. CMotion [Binz
et al. 2011] utilizes multiple criteria defined by domain experts to analyze and generate
application topologies. Approaches like Kingfisher [Sharma et al. 2011], CloudGenius [Menzel
and Ranjan 2012], CloudAdoption [Khajeh-Hosseini et al. 2012] focus on optimally selecting
cloud offerings for monolithic applications based on infrastructure costs. These approaches
are therefore limited in their usefulness w.r.t. the existence of multiple viable and potential
application distribution alternatives across different types of cloud offerings. Nevertheless, all
of the above approaches assume that the application topology is already known (and fixed),
and are restricted to VM-based solutions. Our approach takes into account also non-VM cloud
services like DBaaS offerings, and allows for the dynamic generation of viable application
topologies by reusing, discovering, and selecting γ-topology for the application. The usage of
multi-objective genetic algorithms to narrow the space of available offerings is investigated
by Amato and Venticinque [Amato and Venticinque 2016]. However, it exclusively focus on
SLA conditions and lack of a method to select a concrete cloud offering for the application.
Ye et al. introduce an economic model for composing in IaaS services [Ye et al. 2014]. Our
work goes a step further by generalizing and eliminating constraints w.r.t. the cloud service
used to distribute the application.

The vision explored in this paper goes beyond the state of the art by (i) fostering the
collaboration of business and IT experts towards a common model for distributing cloud-based
applications in a profitable manner, (ii) providing concepts and techniques for facilitating
the exploration and decision making tasks for distributing cloud-based applications among
different types of cloud services, and by (iii) empirically evaluating the usage of utility to
rank the distribution of a realistic application and workload using VM, containerized, and
database cloud services.

19SeaClouds EU Project: http://www.seaclouds-project.eu/project.html
20Cactos EU Project: http://www.cactosfp7.eu/

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

1:20 Gómez Sáez et al.

7. CONCLUSIONS
Migrating applications to the cloud has become in the last years a challenging task, due to the
(i) wide amount of cloud services and providers, and the (ii) heterogeneity of cloud offerings
in terms of their cost and performance. Due to such complexity, there exists a necessity to
develop decision making concepts and techniques to assist application and business architects
to optimally select and configure cloud services and providers to distribute their applications.

This work leverages utility theory to evaluate during design phase the profitability of
applications spanned among multiple cloud services. We introduced a life-cycle and method
that (i) evaluates viable cloud-based application distributions, and (ii) ranks such viable
distributions to assist application and business architects to efficiently select cloud services.
In particular, the utility model evaluates a viable application distribution from an economic
perspective, i.e. its expected monetary return by computing performance and resources costs,
availability, and end user satisfaction when consuming cloud services. The evaluation of the
utility model is driven using the MediaWiki (Wikipedia) application as case study, its realistic
workload, and its publicly available financial data. In particular, we applied the utility model
to evaluate multiple viable topologies of MediaWiki, each using different cloud services,
such as AWS EC2 and ECS, RDS, Beanstalk, Azure VM, and Azure Container Service.
Experimental results show the benefit when using the proposed utility model for deciding
among different application distributions in the cloud, in comparison with considering cost
or availability independently. Such a benefit relies on the fact that the proposed utility
model considers not only availability and cost, but also application’s workload and revenue
model jointly. Future works focus on continuing the evaluations, by (i) driving an extended
sensitivity analysis on the model, and by evaluating (ii) multi-cloud deployment and (iii)
redistribution scenarios. Moreover, further types of application architectures, e.g., workflow-
based or built as micro-services are planned to be considered. Ongoing works are also aligned
with incorporating the analysis of complex pricing models, e.g., spot instances in AWS.

ACKNOWLEDGMENTS
The authors thank Florian Frech and Maria Elena Alonso Mencia for their contributions.

REFERENCES
Alba Amato and Salvatore Venticinque. 2016. Multiobjective Optimization for Brokering of Multicloud

Service Composition. ACM Trans. Internet Technol. 16, 2, Article 13 (April 2016), 20 pages.
Vasilios Andrikopoulos, Tobias Binz, Frank Leymann, and Steve Strauch. 2013. How to Adapt Applications

for the Cloud Environment. Computing 95, 6 (2013), 493–535.
Vasilios Andrikopoulos, Santiago Gómez Sáez, Frank Leymann, and Johannes Wettinger. 2014. Optimal

Distribution of Applications in the Cloud. In Proceedings of CAiSE’14. Springer, Springer, 75–90.
Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s Perspective. Addison-Wesley

Professional.
Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann, Alexander Nowak, and

Sebastian Wagner. 2013. OpenTOSCA - A Runtime for TOSCA-based Cloud Applications. In Proceedings
of ICSOC’13 (LNCS), Vol. 8274. Springer Berlin Heidelberg, 692–695.

Tobias Binz, Frank Leymann, and David Schumm. 2011. CMotion: A Framework for Migration of Applications
into and between Clouds. In Proceedings of SOCA’11. IEEE Computer Society, 1–4.

Eirik Brandtzæg, Parastoo Mohagheghi, and Sébastien Mosser. 2012. Towards a domain-specific language to
deploy applications in the clouds. In Proceedings of CLOUD COMPUTING’12. IARIA, 213–218.

Antonio Brogi, Ahmad Ibrahim, Jacopo Soldani, José Carrasco, Javier Cubo, Ernesto Pimentel, and Francesco
D’Andria. 2014. SeaClouds: a European project on seamless management of multi-cloud applications.
ACM SIGSOFT Software Engineering Notes 39, 1 (2014), 1–4.

Cloud Standards Customer Council. 2013. Migrating Applications to Public Cloud Services: Roadmap for
Success. (December 2013).

Elisabetta di Nitto, Marcos Aurélio Almeida da Silva, Danilo Ardagna, Giuliano Casale, Ciprian Dorin
Craciun, Nicolas Ferry, Victor Muntes, and Arnor Solberg. 2013. Supporting the development and

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

Utility-based Decision Making for Migrating Cloud-based Applications 1:21

operation of multi-cloud applications: The ModaClouds approach. In Proceedings of SYNASC’13. IEEE,
417–423.

M. Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-Wesley Professional.
Sören Frey and Wilhelm Hasselbring. 2011. The cloudmig approach: Model-based migration of software

systems to cloud-optimized applications. International Journal on Advances in Software 4, 3 and 4
(2011), 342–353.

Santiago Gómez Sáez, Vasilios Andrikopoulos, Michael Hahn, Dimka Karastoyanova, Frank Leymann,
Marigianna Skouradaki, and Karolina Vukojevic-Haupt. 2015. Performance and Cost Evaluation for
the Migration of a Scientific Workflow Infrastructure to the Cloud. In Proceedings of CLOSER’15.
SciTePress, 352–361.

Santiago Gómez Sáez, Vasilios Andrikopoulos, and Frank Leymann. 2016. Consolidation of Performance and
Workload Models in Evolving Cloud Application Topologies. In Proceedings of CLOSER’16. SciTePress,
Rome, Italy, 160–169.

Santiago Gómez Sáez, Vasilios Andrikopoulos, Frank Leymann, and Steve Strauch. 2014. Design Support
for Performance Aware Dynamic Application (Re-)Distribution in the Cloud. IEEE Transactions on
Services Computing 8, 2 (December 2014), 225–239.

Hadi Goudarzi and Massoud Pedram. 2011. Multi-dimensional SLA-based resource allocation for multi-tier
cloud computing systems. In Proceedings of CLOUD’11. IEEE, 324–331.

Rolf Harms and Michael Yamartino. 2010. The economics of the cloud. Microsoft whitepaper, Microsoft
Corporation (2010).

Jez Humble and Joanne Molesky. 2011. Why enterprises must adopt devops to enable continuous delivery.
Cutter IT Journal 24, 8 (2011), 6.

Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. 2013. Cloud migration research: a systematic review.
IEEE Transactions on Cloud Computing 1, 2 (2013), 142–157.

Ralph L Keeney and Howard Raiffa. 1993. Decisions with multiple objectives: preferences and value trade-offs.
Cambridge university press.

Ali Khajeh-Hosseini, David Greenwood, James W. Smith, and Ian Sommerville. 2012. The Cloud Adoption
Toolkit: supporting cloud adoption decisions in the enterprise. Software: Practice and Experience 42, 4
(2012), 447–465.

Joseph Packy Laverty, David F Wood, and John Turchek. 2014. Micro and Macro Economic Analysis of
Cloud Computing. Issues in Information Systems 15, 2 (2014).

Frank Leymann, Christoph Fehling, Ralph Mietzner, Alexander Nowak, and Schahram Dustdar. 2011.
Moving applications to the cloud: An approach based on application model enrichment. International
Journal of Cooperative Information Systems 20, 03 (2011), 307–356.

Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp: Comparing Public Cloud
Providers. In Proceedings of IMC’10. ACM, 1–14.

Alfred Marshall. 2009. Principles of economics: unabridged eighth edition. Cosimo, Inc.
Peter Mell and Tim Grance. 2011. The NIST definition of cloud computing. (2011).
Michael Menzel and Rajiv Ranjan. 2012. CloudGenius: decision support for web server cloud migration. In

Proceedings of WWW’12. ACM, New York, NY, USA, 979–988.
M. Miglierina, G.P. Gibilisco, D. Ardagna, and E. Di Nitto. 2013. Model based control for multi-cloud

applications. In Proceedings of MiSE’13. 37–43.
Dorian Minarolli and Bernd Freisleben. 2011a. Utility-based resource allocation for virtual machines in cloud

computing. In Proceedings of ISCC’11. IEEE, 410–417.
Dorian Minarolli and Bernd Freisleben. 2011b. Utility-based resource allocation for virtual machines in

Cloud computing. In Proceedings of ISCC’11. IEEE, 410–417.
Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh. 2011. Kingfisher: Cost-aware elasticity

in the cloud. In Proceedings of INFOCOM 2011. IEEE, 206–210.
John D Strunk, Eno Thereska, Christos Faloutsos, and Gregory R Ganger. 2008. Using Utility to Provision

Storage Systems.. In FAST, Vol. 8. 1–16.
Hong Xu and Baochun Li. 2013. Dynamic cloud pricing for revenue maximization. IEEE Transactions on

Cloud Computing 1, 2 (2013), 158–171.
Zhen Ye, Athman Bouguettaya, and Xiaofang Zhou. 2014. Economic Model-Driven Cloud Service Composition.

ACM Trans. Internet Technol. 14, 2-3, Article 20 (Oct. 2014), 19 pages.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1, Publication date: January 2016.

